KAIST, 감정노동 근로자 정신건강 추정 가능한 AI 모델 개발

15

감정적 작업 부하 높은 상황 판단, 정확도 87%

감정적 작업 부하의 통합 모델. ⓒ한국과학기술원

한국과학기술원(KAIST)은 감정노동 근로자의 정신건강을 살피는 인공지능(AI) 모델을 개발했다고 11일 밝혔다.

이의진 KAIST 전산학부 교수 연구팀은 박은지 중앙대학교 교수팀, 미국 애크런 대학교의 감정노동 분야 세계적인 석학인 제임스 디펜도프 교수팀과 다학제 연구팀을 구성해 근로자들의 감정적 작업 부하를 실시간으로 추정해 심각한 정신적, 신체적 질병을 예방할 수 있는 인공지능 모델을 개발했다.

모델 개발을 위해서는 현실을 충실히 반영한 고품질의 상담 시나리오 데이터셋 구축이 필수적어서 연구팀은 현업에 종사 중인 감정 노동자들을 대상으로 고객상담 데이터셋을 구축했다. 일반적인 콜센터 고객을 응대 시나리오를 개발하여 31명의 상담사로부터 음성, 행동, 생체신호 등 다중 모달 센서 데이터를 수집했다.

연구팀은 인공지능 모델 개발을 위해 고객과 상담사의 음성 데이터로부터 총 176개의 음성특징을 추출했다. 음성 신호 처리를 통해서 시간, 주파수, 음조 등 다양한 종류의 음성특징이 추출하며, 대화 내용은 고객의 개인정보 보호를 위하여 사용하지 않았다. 정서 표현 규칙으로 인한 상담사의 억제된 감정 상태를 추정하기 위하여 상담사로부터 수집된 생체신호로부터 추가적인 특징을 추출했다.

피부의 전기적 특성을 나타내는 피부 전도도(EDA) 13개의 특징, 뇌의 전기적 활성도를 측정하는 뇌파(EEG) 20개의 특징, 심전도(ECG) 7개의 특징, 그 외 몸의 움직임, 체온 데이터로부터 12개의 특징을 추출했다. 총 228개의 특징을 추출해 9종의 인공지능 모델을 학습하여 성능 비교 평가를 수행했다.

학습된 모델은 상담사가 감정적 작업 부하가 높은 상황과 그렇지 않은 상황을 87%의 정확도로 구분해 냈다.

기존 감정-탐지 모델에서 대상의 목소리가 성능 향상에 기여하는 주요한 요인이었지만 본인의 감정을 억누르고 친절함을 유지해야 하는 감정노동의 상황에서는 상담사의 목소리가 포함될 경우 오히려 모델의 성능이 떨어지는 현상을 보였다는 것이다.

그 외에 고객의 목소리, 상담사의 피부 전도도 및 체온이 모델 성능 향상에 중요한 영향을 미치는 특징으로 밝혀졌다.

이의진 교수는 “감정적 작업 부하를 실시간으로 측정할 수 있는 기술을 통해 감정노동의 직무 환경 개선과 정신건강을 보호할 수 있다”며 “개발된 기술을 감정 노동자의 정신건강을 관리할 수 있는 모바일 앱과 연계하여 실증할 예정이다”고 말했다.

©(주) 데일리안 무단전재 및 재배포 금지

+1
0
+1
0
+1
0
+1
0
+1
0